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ABSTRACT

The present paper is devoted to the constructionoofinear unsteady hydrodynamics mathematical mofie
bodies during interaction with free water surfathe using of vortex sheets method is supposed.ed/ettirface of
bottom and free fluid surface are represented byexasheets. The fluid perturbed motion velocitydescribed by
means of integral in Cauchy form and singular-irtbégequation for bottom vortex density is constedgct The
mathematical model of ship waves is constructedrier to determine the free surface vortex den3ibe summary
and distributed loads as well as the laws of matifor the wedges of infinite and finite mass ardaoted and
compared with known experimental and theoreticaults. Numerical experiment results on base of ogmi
mathematical model may be taken as scientific bfasishe prediction of slamming loads and desigh&igh-speed
ships.

Keywords: immersing of bottom, mathematical modeling of hgignamic loadings, vortex sheets method.

1. INTRODUCTION As generally free boundary is not a stream-surface,
points of boundary the equation of the Euler shddd

Many tasks of modern hydrodynamics are bound to fulfilled. The kinematical condition on free boumgas

driving of bodies in a fluid with free boundarighe provided with its moving together with fluid patés.

form which one is d_etermlned during soll_Jt_|0n and on The fluid velocity is final in all points ofS_L(t)

which one the nonlinear boundary conditions should o )

satisfy in a general case. The known research ofi su (9eneralization of the Chaplygin-Joukovsky pose)lat

of nonlinear hydrodynamic parameters of bodieshef t ©Of & velocity circulation on an arbitrary fluid d¢ine

complicated form intersecting a free surface of a including area of disturbed motion.

weighty fluid is important for the majority of teaical

applications. 3. MATHEMATICAL MODEL
To the given paper the nonlinear non-stationary )
mathematical model and results of numerical researc Let us represent boundary of a fluid

of imbedding of wedges of infinite width is desaib S=§0 9, §00 §by a surface vortex pattern
The matching with known designed and experimental r r r r
data is given. 7( )={V1(51),V2(32),V3(S )}

When determining a velocity potential of disturbed
2. FORMULATION OF PROBLEM motion in an upper half-space, we shall receivecigpe

) ] _analog of the Sohotsky formulas
Let us assume that non viscous incompressible

fluid is posed in a lower half-space with boundary Vrv+ (§<, t) - \5\/‘ (rx, t) = {,()r( t) x F]( l;(, t) ;

which consists of a wetted part of a b(ﬁ)( t), r élt ‘ r glt
7t x(x=<)
isobaric free surfaceS, ( t) and hydrodynamic body \,\/*' (§<, t) - 5\/‘ (';g t) = 1 3 ds
2 r
wake S3 ( t) O %( 9 Not upsetting a generality it is S ‘X -¢
possible to suppose the known law of motion, iniclgd e r N .
deformation, of a body and to consider the non- Where W- (X’ t) — limiting values of a fluid

stationary flow with the given initial form of free perturbation velocity at tendency of a point x ®
boundary and wetted part of a body at a contadt dfya
fluid.

A field of perturbation velocities in internal péén  — external in relation to a fluid a normal &
of a fluid is potential on a Lagrange's theorem. A

condition of impenetrability is satisfied oSl( t) and a

[/l
accordingly from an upper (lower) half-spad’e(x, t)

r—,r
It is possible to determine the module (X, t) of

velocity on SZ from the Cauchy—Lagrange integral, and

dynamic condition of isobar is satisfied & ( t) : its direction can by determined from the analydishe
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Euler equation due to orthogonality of a pressure A impenetrability condition of a wetted part of
gradient to isobaric free surface. In particulataagent a body and the Sohotsky formulas in view of continu

component of fluid velocity onSZ is collinear with of normal velocity component on free surfaﬁg allow
projection of the acceleration due to gravity g émeir to construct the system of the singular integro-
directions coincide for falling sides of surfacedaare differential equations for definition of vortex e

opposite — for rising sides. This outcome is comied to density and forms of free surface, the wake andtuy
kinematics of Gerstner waves. wetted surface.

I ()5 Doseab(bob(%y, k080

ro e
S ‘x -&
r rrr 7(£’t)x({(_£)ds+59n(wn X t)r r 2
yz(x t)—2n(x,t) (E- nn) I T3 Ox [ (D) = (W (% )= (D) -
_ o nx g 2
S X—=¢
1
r I e
=2(&x,t)+ gh(x, 1) ]2 =v(D},  xOS,(9;
dx _ 1 ( )x( gIr) 1r ror r .
d_:4_J' 3 dS—Ey(x t)xn(x t)= v(9, x 0 S, (9,
s [x=¢]
whereV(t) — velocity of an origin of body coordinates; The numerical implementation of an offered
' _ _ mathematical model was realized by a method of
Vl(X, t) — velocity of points of a body surfac&;; discrete vortexes on algorithm of iterative

1 . ) . approximation. At build-up of vortex model of a vest
h(X, t) — perturbation of free surfacSz, E — unit surface of a body and wake the requirements of the
matrix; (E — IEIET) — operator of projection of a vector Thomson and Helmholtz theorems were satisfied. The

on a surface, the multiplying on the transposedmabr spray jets were simulated by additional vortexesain

rT water-line  neighbourhood under the Joukovsky
vector N is understood in sense of multiplying of scheme [9] for obtaining solution with restrictexhd in
matrixes; the point marks a local derivative onetim a spray zone. The indispensable methodical resesuath
the calculating scheme of a wetted surface were
4., NUMERICAL IMPLEMENTATION OF conducted. At small trajectory corners of a body
MATHEMATICAL MODEL splashdown the rediscretization of a diving timepsivas
envisioned.
At numerical implementation of a mathematical It is known that the considered task with the atiti

model the integrals are conversed to multivariate data (Cauchy problem) for an unlimited time slisellr
integrals such as the Cauchy [4], many propertiesconditioned because of instability of free vortex
which one are generalization of known outcomes of asurfaces [10]. Conditionally corrected numerical

one-dimensional case [5]. Let's suppose surfaSgs implementation of a mathematical model was obtained
' due to special regularization ways.

and SZ piecewise smooth on Lyapunov, admitting At first, usage of a mathematical formalism of the
only lines of angular points (location of a sprayion a  theory of integrals such as the Cauchy, allows

. . considering zero vortex sheets density in free aserf
water ImeSl n % keel both bilges on a bOdﬁl and angular points and ensures its stability. Seconttly,

nonlinear wave crests 0152 Possible zones of so-x long processes of interaction of a body with fredece,
called out-of-limit nonlinearity (cusp and collapse N particular, at diving, it turned out necessarnekecute
points of wave crests, free jets etc.) thereby arethe Courant-Friedrichs—Levi condition [11] and in

eliminated from reviewing. appropriate way to distort the calculating scheme.
Postulating continuity of a velocity field shall The form and sizes of a body wetted surface can

demand vanishing of density of integrals such asciya ~ here noticeably vary as against the conventiorsiistaf

on lines of angular points, that corresponds céibn hydrodynamics. That not only adds nonlinearity to a

edge as Sommerfeld [6] for keel both bilges on dybo formulation, but also considerably complicates the

Sl and indirectly reflects collapse of nonlinear wave solution of task. In particular, conformity of ptsnat
y P finite-difference calculation of a local derivativef

and free jets orSZ. On a part ofawater-linﬁ N % potential can be ensured only at usage of an affine
the appearance of spray jets is generally possibi similarity with a current characteristic size ofwetted

speed in which ones is finite [7]. The tops of théats surface. Besides, at calculation of non-statiorleads
are angular points; it is possible and indefinit@ynote. ~ ©N @ body it is necessary to allow for rapidityvestted

Density of an integral such as the Cauchy in thésn a Surface change. In some cases it appears to expedie
should vanish [8]. We shall consider that vortegets ~ consideration of an integral of the Cauchy-Lagrange

density is satisfied the Gelder condition.
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moving axis, bound with a characteristic point of a
water-line.
5. CALCULATIONS

With the purpose of testing of a mathematical
model
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Figure 1 The calculation results of resistancedmt
wedges with different deadrise argle

the known non-stationary tasks about a start afirg
(Wagner's task) and vertical diving of a plate with
constant velocity and trim angle were considered.

The calculation results of a gliding were compated
precise Sedov's solution for a weightless fluid. In
calculation, the rarefaction in an after-body ae th
beginning of gliding is obtained, what was the@asty.

forecasted by Wagner and was watched by Sokolyansky

and Malyarova in experiments of CAHI. The calcuati
results of a plate diving are satisfactorily agresith
experiment of Shorigin (CAHI). For forward edge af

plate a rarefaction area also is detected

The task about a gliding of a deformable plate
making elastic vibrations was considered. The time
dependences of coefficients of normal force, moment
position of pressure center and pressure distahuin a
plate for different parameters of oscillations tained.
Vertical diving of symmetric wedges with different
deadrise angles was considered. The calculatiartses
of resistance force and pressure distribution aindi
with constant velocity are shown on Figure 1 and
Figure 2, in comparison to known theoretical estioms
for a weightless fluid.
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Figure 2 The calculation results of pressure
distribution on a wedge with deadrise angles

B =20°

The task about a diving wedge of a final mass was
solved at final Froude numbers. The integral and
distributed hydrodynamic loads, and also law of iorot
for different deadrise angles were calculated. fEseailts

of calculation of overloa, and law H (t) of diving

for a wedge with a deadrise ang@, linear mass
density112 kg/mand initial velocity 2.44 m/< in

comparison to the experimental data of Shorigir] firé

shown in Figure 3. As in experiment the law/(t) of
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Figure 3 Diving of a wedge with finite mass:
points— experiment of Shorigin [14
diving (decryption of high-speed filming) was most
authentically defined, the satisfactory coordinatigith
it demonstrates that the calculated overload isnddf
more precisely than in physical experiment.
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Diving velocity

v
Py Pressure on free boundary of a fluid
p Mass density of a fluid
Py Resistance force of a wedge
H Imbedding a wedge
G Weight of a wedge
Ny  Overload n, =R,/ G
c Wetted half-width of a wedge
S Deadrise angle of a wedge
C Pressure coefficient

" ¢, = I VP 12

p (p' @ ) pv
6. CONCLUSION

The built mathematical model can be applied for
definition of loads with the purpose of an estiroatbf
fastness and dynamics of bodies interacting witlea
surface of a fluid.
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